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ABSTRACT  
 

Design of slopes and analysis of existing slopes are carried out routinely using 
approximations of plane strain and substitution of quasi-static load for the seismic 
excitation.  A three-dimensional analysis of slopes is used here, based on the 
kinematic theorem of limit analysis. A 3D rotational mechanism with a failure 
surface passing through the slope toe was developed, applicable to steep slopes. A 
quasi-static approach is used and an example of charts for the assessment of the factor 
of safety for slopes with predefined width of the failure mechanism is shown. Critical 
acceleration is also calculated for 3D slopes, and a sliding block analysis is carried 
out to develop a solution for displacements of slopes subjected to seismic excitation.   
 
INTRODUCTION 
 

The methods developed for 3D analyses of slope stability can be grouped in at 
least three categories: limit equilibrium approach, numerical methods, and limit 
analysis. In the first category the failing mass is divided into blocks (typically 
columns), and global (force) equilibrium is required (e.g., Hungr 1987). As the 
problem is statically indeterminate, additional static, often arbitrary assumptions are 
made. The second category includes predominantly the finite element method (e.g., 
Griffiths and Marquez 2007). The advantage of FEM is in assessment of deformation 
prior to failure, and no need to predetermine the failure pattern.  This method is well-
suited to produce solutions for specific, well-defined slopes, but it becomes more 
elaborate when multiple calculations are needed with varied slope geometry. Finally, 
the limit analysis approach can yield a rigorous bound to the safety factor. While 
approximate, optimization of the failure mechanism assures that the solution is a 
good estimate of the ‘true’ safety factor. This was confirmed by calculations of Chen 
(1975), who concluded that the rotational mechanism for slopes failing under plane 
strain conditions is the most critical one. Similar conclusions follow from 
comparisons of limit analysis results and the finite element calculations (e.g., Lane 
and Griffiths 1997).  The kinematic approach of limit analysis is used in this 
presentation.   
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 We limit application of the results to steep slopes as the failure mechanism 
considered always passes though the toe; this may not be true of ‘gentle’ slopes. 
Efforts to produce a kinematically admissible 3D below-toe mechanism are 
underway.  

After a brief introduction of the method, we present the 3D failure 
mechanism, followed by calculations of the safety factor for slopes subjected to 
seismic excitation. Limited results of critical acceleration calculations, and 
preliminary results from 3D sliding block analysis are also presented.  
  
 
KINEMATIC APPROACH OF LIMIT ANALYSIS  
 

Limit analysis is applicable to soils with convex yield conditions and 
deformation governed by the normality rule. Early applications of limit analysis to 
slope stability problems (2D) can be found in Drucker et al. (1952) and Drucker and 
Prager (1952).  A multitude of solutions to a wide range of problems utilizing this 
method can be found in the monograph by Chen (1975).  

So far, there have been only a few attempts at 3D analyses of slopes using the 
kinematic approach of limit analysis.  These include a single and multi-block 
translation mechanisms (Drescher 1983, Michalowski 1989), and rotational 
mechanisms (de Buhan and Garnier 1998, Michalowski and Drescher 2009, 
Michalowski 2010). Three-dimensional failures for purely cohesive soils were 
considered earlier by Baligh and Azzouz (1975) and Gens et al. (1988). 

A rotational mechanism of collapse is considered here as developed by 
Michalowski and Drescher (2009).  The geometry of the failure surface is presented 
in Fig. 1(a), and its cross-section with the slope is illustrated in Fig. 1(b). 
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Figure 1.  (a) The shape of the failure surface, and (b) schematic of the collapse 
mechanism. 
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The failure surface has a shape of a curvilinear cone (“horn”) with an apex 
angle of 2φ, which assures admissibility of rigid rotation. The contours of the surface 
on the central cross-section are both log-spirals, and the trace of the surface on any 
radial plane forms a circle. The details of the analysis have already been presented 
elsewhere (Michalowski and Drescher 2009), and we concentrate on the inclusion of 
the inertial terms in the analysis. To assure that the mechanism will tend to a plane 
one if no limitations are placed on its width, this mechanism is modified by inserting 
a plane section of width b, Fig. 2. The geometry of the insert is such so that the entire 
composite surface is smooth.   
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Figure 2.  Collapse mechanism modified with a plane insert (adapted from Michalowski  
and Drescher 2009). 

 
The kinematic approach of limit analysis is based on a theorem that states: the 

rate of internal work in any kinematically admissible mechanism is not smaller than 
the work rate of true external forces. Consequently, by equating the two rates, one 
can calculate a rigorous bound to one unknown, be it limit load, safety factor, or 
critical acceleration. In general, this inequality can be written in the following form 
 
 
 3 2 3 2 3 2D D D D D D

s sD D W W W Wγ γ+ ≥ + + +                                          (1) 
 
where superscript 3D denotes the work rates for the three-dimensional portion of the 
failure mechanism and superscript 2D relates to the plane insert (Fig. 2). The two 
terms on the left-hand side represent the internal work rate, whereas the subscript γ in 
the terms on the right-hand side denotes the rate of gravity forces, and subscript s 
relates to the seismic (inertial) force. The seismic force is taken here as the quasi-
steady horizontal load of intensity equal to fraction kh of the distributed gravity load. 
 
SAFETY FACTOR AND CRITICAL ACCELERATION  
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Results of calculations based on the energy rate balance for an incipient 3D 
mechanism can yield the safety factor or the yield acceleration. In any case, a strict 
bound to only one unknown can be calculated from inequality (1).  The safety factor 
is defined here as the ratio of the strength parameters to those needed to maintain 
stability (cd, tanφd) 
 

 tan
tand d

cF
c

φ
φ

= =                                                                       (2) 

 
When the strength of the soil is described by two parameters: φ and c (Mohr-
Coulomb yield condition), then iteration is typically required to determine the safety 
factor from pre-calculated charts. However, if the results are presented as function of 
c/tanφ, there will be no need for iteration. This is because this ratio is independent of 
the safety factor, i.e., c/tanφ  = cd/tanφd. The preliminary results in Fig. 3 are 
presented as F/tanφ (or 1/tanφd) vs. c/(γHtanφ).  

 
 

Figure 3.  Safety factor for slopes with inclination angle of 60°.  
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Reading the safety factor from charts in Fig. 3 is straight forward: for parameter 
c/(γHtanφ), characteristic of a given slope, read F/tanφ for the failure of given width 
B. Width B is determined by geology or geometry (e.g., in case of excavation slopes). 
Results for a wider range of parameters will be presented elsewhere (Michalowski 
and Martel 2010). The advantage of these charts is in assessment of the influence of 
limited width of the mechanism (in case of embankment slopes, or constraints set by 
geology) over the 2D solutions (indicated on charts as ‘plane’ case). 

Alternatively, the problem can be formulated in terms of critical acceleration 
coefficients ky. In this case the slope is characterized by inclination angle β, internal 
friction angle φ, and coefficient c/γH. An example of calculated critical acceleration 
coefficient for 60-degree slopes is illustrated in Fig. 4.    

 

 
 

Figure 4.  Critical acceleration for slopes with inclination angle of 60°. 
 

Once the critical acceleration is determined, one can estimate displacements 
of slopes subjected to ground motion with acceleration exceeding the critical value.  
This is shown in the next section.  
 
SLIDING BLOCK ANALYSIS 
 

Calculations of displacements of slopes subjected to seismic acceleration are 
based here on the concept of a sliding block (Newmark 1965).  Here, the 
consideration is modified to include rotation of the failing mass, much like that in the 
paper of Chang et al. (1984), You and Michalowski (1999), and Michalowski and 
You (2000). While the specific mechanism considered here is one rotating block, the 
concept can be applied to multi-block mechanisms as demonstrated in Michalowski 
(2007). 

The details of the analysis will be presented elsewhere; here we present only 
some preliminary results. Based on the geometrical relations in Fig. 1(a), the 
horizontal component of the displacement at the toe can be written as 
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 sinx h hu r θ θ=                                                                            (3) 
 
Where both rh and θh are shown in Fig. 1(a), and θ is the total angular displacement 
calculated from the analysis as 
 

 , 0
t t

dtdtθ θ θ= >∫ ∫ && &                                                               (4) 

 
with θ&&  being the angular acceleration calculated from the dynamic analysis of rigid 
rotation that assures that the failing slope satisfies equations of motion. Integration in 
eq. (4) is taken only over time intervals when the angular velocity θ&  is positive. The 
specific form of θ&&  in eq. (4) is calculated by subtracting the work rate balance 
equation for an incipient rotation of the slope at the moment when the record has 
reached the yield acceleration (kh = ky), from the balance equation for an instant when 
the acceleration exceeds the yield value (kh > ky). The solution to θ&&  can be written in 
general form as 
 
 ( )yg k k Mθ = −&&                                                                      (5) 
 
where M is a dimensionless coefficient dependent only on the slope characteristics, 
and k – ky is the difference between the acceleration coefficient in the ground motion 
record and the critical acceleration coefficient of the structure (here: k = kh). Now, 
using eqs. (3) - (5), the horizontal displacement at the toe takes form 
 

 ( ) , 0x y
t t

u Cg k k dtdt θ= − >∫ ∫ &                                              (6) 

 
where dimensionless coefficient C is a function of the slope geometry and the failure 
mechanism (depends on M). A more detailed derivation of a similar type, but for a 
2D translational mechanism, can be found in Michalowski (2007). 
 Only horizontal seismic acceleration was considered in the analysis, although 
including the vertical component of acceleration is straight-forward.  The shaking 
was assumed to take place in the plane of Fig. 1(a) (i.e., perpendicular to the crest), 
with the most adverse effect when the acceleration points into the slope (inertial force 
out-of-slope). 
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Figure 5.  An example of calculated coefficient C for slopes characterized by c/γH = 0.1. 
 
The simplicity of the expression in eq. (6) comes from the dynamic analysis of the 
rigid-body rotation. For a given slope with a given collapse mechanism, coefficient C 
is the outcome of the analysis (Fig. 5), while the double-time integral can be pre-
calculated for variety of (GPA-scaled) ground motions and critical accelerations. An 

example of pre-calculated integrals ( )y
t t

g k k dtdt−∫ ∫  (in cm) is shown in Fig. 6.  

The Peak Ground Acceleration of the record (Imperial Valley Earthquake1) 
was scaled, and the integrals are presented in Fig. 6 for a variety of differences km – 
                                                 
1 Station name: Holtville Post Office; mag. 6.5, Ep. dist.. 19.81 km., PGA 0.25g, PGV 47.49 cm/s, 
PGD 29.15 cm. 
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ky. This is distinct from the more common presentation as a function of ky/km, which 
tends to give a more non-linear representation of the displacement. In either case, the 
charts represent the same outcome, and any permanent displacement can occur only if 
km ≥ ky. 
 

 
 
Figure 6.  Pre-calculated displacement integral for 1979 Imperial Valley Earthquake1. 

 
The results presented are preliminary; proper analysis of seismic displacements of 
slopes requires calculations for many ground motions, and it might include an 
analysis of sensitivity of the outcome to the characteristic features of the ground 
motion records, such as peak ground velocity or peak ground acceleration.  
 
CONCLUSIONS 
 
Three-dimensional stability analysis of slopes was developed with seismic loads 
considered as quasi-static distributed force.  The charts developed allow one to read 
the safety factor without a need for an iterative procedure. The analysis is applicable 
in cases where the width of the mechanism is limited, for instance, in case of 
excavations, or when the mechanism is confined by local geology.  An analysis was 
also developed for calculations of critical acceleration coefficient and displacements 
due to seismic excitation. The latter calculations are based on the dynamic analysis of 
the rigid rotation mechanism.   

A key limitation of the analysis developed is in the failure surface passing 
through the toe of the slope, making it applicable to slopes of inclination not smaller 
than 45°.  Future research will address 3D below-toe failure patterns, as well as the 
influence of the presence of a phreatic surface in the slope.  
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